END TERM EXAMINATION

FIRST SEMESTER [MCA] DECEMBER 2013

Paper Code: MCA105

Subject: Discrete Mathematics

Time: 3 Hours

Maximum Marks: 60

Note: Attempt any five questions including Q.no.1 which is compulsory.

Select one question from each unit.

Q1. Attempt **any ten** of the following:

[10 x 2=20]

- a) How many diagonals are there in a regular decagon.
- b) Prove that $p \rightarrow (p \lor q)$ is a tautology.
- c) The set P({a,b,c }) is partially ordered with respect to the subset relation. Find a chain of length 3 in P.
- d) Find the solution of recurrence relation $a_n=3a_{n-1}+1$ where $a_0=1$.
- e) Prove that if gcd (a,b)=1 then gcd $(a^2,b^2)=1$.
- f) Consider (m,3m) encoding function , where m=4. For received word 011010011111 an error will occur or not.
- g) Give 2 ways to represent a graph in computer.
- h) Define hamiltonian graph with example.
- i) Show that any subgroup of a cyclic group is cyclic.
- j) Show that if any 5 numbers from 1 to 8 are chosen, then two of them will add up to 9.
- k) How many ways are there to arrange 7 –sign and 5 +sign , such that no two +sign are together.

<u>UNIT –I</u>

Q2. a) knight is a person who always tell truth and knave always lie. We have two people A and B such that

A says "B is a Knight", B says "the two of us are opposite"

What are A and B ?[3]b) Let Z be the set of all integers and R be a relation defined on Z such that for
any a,b \mathcal{E} Z ,aRb if and only if ab \geq 0.Is R an equivalence relation ?[4]c) Show that a set of n elements can have 2^n subsets.[3]

Q3.a) Prove that |xy|=|x||y| is true for all real numbers x and y. [3]

b) Define function. Find the inverse of $f(n)=2(x-2)^2+3$ for all $x \le 2$. [4]

c) Find the number of integers between 1 and 100 that are divisible by any of the integer 2,3,5,7. [3]

<u>UNIT –II</u>

Q4.a) solve the difference equation

 $a_r-5a_{r-1}+6a_{r-2}=2^r+r$ for $r \ge 2$ with the boundary conditions $a_0=1$ and $a_1=1$. [5]

b) let L_1 be the lattice D_6 (divisor of 6)={1,2,3,6} and let L_2 be the lattice

 $(P(S), \underline{C})$ where $S = \{a, b\}$. Show that two lattices are isomorphic. [5]

Q5.a) simplify $y=\sum m(0,1,2,3,4,6,8,9,10,11,12,14)$ using K-map. [5] b) Compute f(n) when $n=2^{k}$, where f satisfies the recurrence relation $f(n)=8f(n/2)+n^{2}$ with f(1)=1. [5]

<u>UNIT –III</u>

Q6.a) Let $(G,*)$ be a group. Let $H=\{a: a \in G \text{ and } a*b=b*a \text{ for all } b\in G\}$.	
Show that H is a normal subgroup.	[5]
b) Is 8792002627912 a valid universal code. Explain.	[3]

c) Solve 34x=60(mod98) Q7.a) A code G contains 16 code words: 0000000, 1111111, 1101000 and all it's cyclic shifts, 0010111 and all it's cyclic shifts. show that (G,) is a group code. Set up the coset table to show that G can correct all single transmission

b) Encrypt the word 'BOOK' and 'PARK' using ceaser cipher system f(p)=p+3(mod 26).[5]

UNIT –IV

Q8.a) Define Eulerian graph. Prove that a non empty connected graph is eulerian if and only if it's vertices are all of even degree. [4]

b) Differentiate between

Graph and Tree i.

errors.

- Sub graphs and isomorphic graph ii.
- iii. Connected and complete graph

Q9.a) Prove that a planar graph G is 5 colorable.

b)Explain inorder, preorder and postorder tree traversals with the help of an example. [5]

[2]

[5]

[3*2=6]

[5]