END TERM EXAMINATION

FIKST SEMESTEK [NICA] DECEMBER-2009			
Paper Code: Subject:Disc Paper Id-441		rete Mathematics	
	of 10 marks each.	e rest are	
Qı	(a) Let $S = \{a, b, \phi\}$ then find power set $P(P(S))$.	(2x10=20)	
	(b) Find the number of reflexive relations that can be defined on a set A with 4 elements.		
	(c) How many nodes of degree two can you find in a complete binary tree T having n leaf nodes?		
	(d) Define regular grammar and give production rule for a language in {0, 1} that terminates in a string "01".		
	(e) In how many ways can a party of 7 persons arrange themselves around a circular table? Also, find number or ways in which they can arrange themselves in a queue.		
	(f) Prove that a bounded Poset has both least and greatest element.		
	(g) Show that the proposition $(\mathbf{v}(\rightarrow))$ is a tautology.		
	(h) Write converse of the following statements: - I stay only if you go. My pen is RED and your car is WHITE		
	(i) Prove that a finite string belongs to a set of regular languages.		
	(j) If a and b are two distinct identity elements in a group (G,*). Justify or contradict the statement		
Q2	(a) Let $A = \{a, b, c, d, e\}$ and $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}$ then compute		
	(i) R^2 and (ii) R^{∞} .	(3+2)	
	(b) Prove that the relation "congruence modulo m" is an equivalence relation in the set of integers.	(5)	
Q3	(a) Show that n^3+2n is divisible by 3.	(5)	
•	(b) Prove that sum of two rational numbers is a rational number. Using the		
	proof show that sum of a rational number and an irrational number is an		
	irrational number.	(3+2)	
Q4	(a) Let L, be distributive Lattice, for any a, b, c EL, then show that if		
	A = A and $V = V$ then b=c.	(5) (5)	
	(b) Simplify the Boolean function: $() = ()$	(5)	
Q5	(a) Without using truth table, prove De Morgan's law of addition and multiplication of Boolean variables x and y i.e.	(3+3)	
	(i) $(x + y)' = x' \cdot y'$ (ii) $(x \cdot y)' = x' + y'$		
	(b) Prove that $\rightarrow = \neg \lor$	(4)	
Q6	Using Prim's algorithm find minimal spanning tree from the following graph.	(10)	

- Q7 (a) Show that in a subset H of a group (G,*) if $a*b^{-1}$ is in H for all a, b in H, then (5) H is a subgroup of G.
 - (b) Write a shore note on the application of group theory in computer science (5) and application in context of either object oriented technology or encryption or any other fields you think fit.
- Q8 (a) State and prove pumping lemma for regular language. (b) Simplify the following FSM.

Q9 Write short notes on <u>any two</u> of the following: -

(2x5=10)

(4)

(6)

0

- (a) Generating function
- (b) Classification of recurrence equation
- (c) Isomorphic graph