(Please write your Exam Roll No.)

Exam Roll No.

END TERM EXAMINATION

THIRD SEMESTER [MCA] DECEMBER-2012

Paper Code: MCA 201 Time : 3 Hours **Subject: Theory of Computation**

Note: Attempt five questions including Q. no. 1 which is compulsory. Select one question from each unit.

- Q1 Answer the following :-
 - (a) Give regular expression for the following :-
 - (i) $\{1^{2n+1}: n>0\}$ and (ii) $\{a^n: n \text{ is divisible by } 2 \text{ or } 3 \text{ or } n=5\}$.
 - (b) Define multitape Turing Machine.
 - (c) State Myhill-Nerode theorem.
 - (d) Define derivation tree for CFG.
 - (e) When a problem is said to be undecidable? Give an example of an undecidable problem.
 - (f) State Post Correspondence Problem.
 - (g) Show that id+id*id can be generated by two distinct leftmost derivation in the grammar E → E+E | E*E | (E)id |.
 - (h) Convert the grammar $S \rightarrow aSb \mid ab$ into Chomsky normal form.
 - (i) State Savich Theorem.
 - (j) What are the various phases in the design of a typical compiler?

<u>UNIT – I</u>

- Q2 (a) Show that the set $L=\{a^p/where p \text{ is prime}\}\$ is not regular. (5)
 - (b) Design a DFA to accept the following language :- (5)

L={w/w ϵ {0,1}^{*} and w when interpreted as a number is not divisible by 3.}

OR

Q3 (a) Convert the following NFA to a DFA :-

	0	1
→p	p,q	Р
q	r	r
r	S	Ø
S	S	S

(2*10=20)

(5)

Maximum Marks : 60

(b) Convert the following Mealy machine into Moore machine :-

Present	Next state				
State	Input	Input a=0		a=1	
	State	Input	State	Input	
→q1	q3	0	q2	0	
q2	q1	1	q4	0	
q3	q2	1	q1	1	
q4	q4	1	q3	0	

UNIT II

Q4 (a) State and prove pumping lemma for CFG.	(7)
(b) Define instantaneous description of a PDA.	(3)

OR

Q5 (a) Design a PDA that accept EVEN Palindrome over {a,b}. (5)
(b) Given G= ({S,A}, {a,b}, P,S) where P={S→AsA|S|SS,A→Sba|ba}, S- start symbol. Find the left most and right most derivation of the string w=aabbaaa. (5)

UNIT III

Q5 (a) Design a Turing Machine that accept the language L={w:n_a(w)=n_b(w),w ∈ {a,b}*}.
(b) Write short note on Church-Turing Thesis.

OR

Q6 (a) Prove that Halting Problem of Turing Machine is Undecidable.	(5)
(b) Explain reducibility.	(5)

UNIT IV

Q8 Write short notes on the following :-

(a) The P and NP complexity classes.

(b) Probabilistic computation.

OR

(5+5)

- Q9 (a) Does PCP with two lists $x=(b,bab^3,ba)$ and $y=(b^3,ba,a)$ have a solution ? (5) (5)
 - (c) Explain L and NL complexity.