END TERM EXAMINATION

THIRD SEMESTER [MCA] DECEMBER-2009

Paper Code: MCA209	Subject: Software Engineering	
Paper Id-44209		(Batch: 2004-2008)
Time : 3 Hours		Maximum Marks :60
	Note : Attempt any five questions.	

- Q1 (a) Write down the major characteristics of software. Illustrate with a diagram that the software does not wear out. (4)
 - (b) What are the components of a software? Discuss how a software differs from a program. (4)
 - (c) List out requirement elicitation techniques. Discuss any two techniques in detail. (4)
- Q2 (a) Discuss the spiral model. What are its advantages and disadvantages? (6)
 - (b) Compare and contrast various software development life cycle models. (6)
- Q3 (a) Suppose that a project was estimated to be 600 KLOC. Calculate the effort and development time for each of the three models i.e., organic, semidetached and embedded.
 (6)
 - (b) Consider the problem of result preparation automation system of B. Tech courses (or MCA program) of any university and design the following: (6)
 - (i) DFD upto level 1
 - (ii) Use case diagram
 - (iii) Use case description for any one use case
- Q4 (a) Define coupling and explain various types of coupling? Which one is best and why? (6)
 - (b) What are software metrices ? Describe information flow based metrics. (6)

Q5 (a) Consider the program for the determination of previous date in a calendar. Its input is a triple of day, month and year with the following range

1<= month <=12 1<= day <=31 1801<= year <= 2009

The possible outputs would be previous date or invalid date. Design the boundary value , robust and worst test cases for the program. (6)

(b) Consider the following program segment.

```
1. void sort { int b[], int n } {
     int i,j;
2.
     for(i=0;i<n;i++)
3.
      for(j=i+1;j<n;j++)
4.
        if(b[i]>b[j])
5.
6.
         {
7.
          temp=b[i];
          b[i] = b[j];
8.
          b[j] =temp;
9.
10.
         }
11.}
```

Q6

Draw the control flow graph and DD path graph for this program	
segment.	(4)
Determine the cyclomatic complexity for this program using all the methods. (Show the intermediate steps in your computation. Writing the final result is not sufficient).	only (2)
cribe various maintenance cost estimation models.	(6)
te a short note on Boledy and Lehman model for the calculation of tenance effort.	(6)
	segment. Determine the cyclomatic complexity for this program using all the methods. (Show the intermediate steps in your computation. Writing the final result is not sufficient). cribe various maintenance cost estimation models.

- Q7 (a) What are various debugging approaches? Discuss them with the help of examples. (6)
 - (b) Describe the Mc Call software quality model. How many product quality factors are defined and why? (6)
- Q8 Write short notes on the following:-

 $(4 \times 3 = 12)$

- (a) Reverse engineering and reengineering
- (b) Use case diagram
- (c) Integration Testing