Exam Roll No.

END TERM EXAMINATION

SECOND SEMESTER [MCA] MAY-2010

	Paper Code:MCA 104	Subject: Theory of Computation		
	Paper ID: 44104			
	Time : 3 Hours	Maximum Marks : 60		
Note: Question I is compulsory. Attempt one question from each unit. Assume suitable de				
	wherever necessary			

Q 1.	(a)	Construct a DFA that accepts all strings on {0.1} that have every block	
		of five consecutive symbols contains at least two 0's.	(4)
	(b)	For the grammer defined below, give derivation tree for the sentential for	n
		babab.	(5)
		$S \rightarrow AB, D \rightarrow a, A \rightarrow Aa, A \rightarrow bB, B \rightarrow Sb$	
	(C)	Show that the grammer is ambiguous	(5)
		S→ a Sa bSS SSb SbS	
	(d)	What is reducibility?	(2)
	(e)	State Post Correspondence Problem.	(2)
	(f)	what is undecidability	(2)

<u>Unit-I</u>

Q 2. (a) Construct equivalent Moore machine for the given Mealy machine as shown below.

(5)

Minimize the finite automata given in the following figure and show that (b) both given reduced are equivalent. (5)

Q 3 Construct a regular grammar G generating the regular set represented (a) by a*b(a+b)*. (5) (b) State and explain Pumping Lemma. (5)

		<u>Unit-II</u>	
Q 4	(a)	Draw/design Push Down Automata equivalent to the grammar and verify the result for string:- aabaaa. S \rightarrow aAA	(5)
	(b)	$A \rightarrow aS \mid bS \mid a$ Prove or explain that if L is a Context Free Language then there ex	xist
	()	an equivalent Push Down Automata.	(5)
Q 5	(a)	Prove that every language recognized by a PDA is Context- free.	(6)
	(D)	recognized by the grammar.	(4)
		$S \rightarrow AB$	
		$A \rightarrow a$	
		$B \rightarrow C/D$ $C \rightarrow a$	
		Unit-III	
Q 6	(a)	In the context of primitive functions, state the initial functions and t	he
		rules of primitive recursion and composition.	(5)
	(b)	Differentiate between a phrase structured Grammar and a Matrix	
		grammar.	(5)
Q 7	(a)	For $\Sigma = \{a,b,c\}$, find a Post System that generates the languages	
	(1-)	L(a*b+ab*c).	(5)
	(D)	Find an L-system that generates L(aa [*]).	(5)
		<u>Unit-IV</u>	
Q 8	(a)	Prove that the halting problem of Turing Machine is Not Decidable	. (5)
	(b)	Define the Classes P & NP.	(5)
Q 9	Write	short notes on:	
	(a)	Post Correspondence Problem	(2x5=10)
	(b)	Computational Complexity.	