END TERM EXAMINATION

SECOND SEMESTER (MCA) MAY 2009

Paper Code: MCA-104 Paper Id: 44104	Subject: Theory of Computation (Batch: 2004-2008)	
Time : 3 Hours	Maximum Marks:60	
Note: Q1. is compulsory. Attempt one question from each section.		
	(2x10=20)	

- Q1. (a) Draw a DFA for language L in $\Sigma = \{0, 1\}$ such that a 0 is always followed by a 1.
 - (b) Find the language generated by a grammar having productions $S \rightarrow Aa, A \rightarrow bB, B \rightarrow aB, B \rightarrow c.$
 - (c) How a deviatior tree is useful for determining whether a word belongs to the language generated by a grammar? Can it be used for CSG?
 - (d) Outline fundamental differences between L-systems of Grammar and that of Chomsky grammar.
 - (e) Define an ambiguous grammar. Give an example of such a grammar.
 - (f) Give a recursive formula for addition of two positive numbers using initial functions like zero, identity and successor functions.
 - (g) When a problem is called of P-class? Give an example of problem that belongs to P class.
 - (h) Describe in words the language represented by the regular expression b*(a+b)*ab*
 - (I) Give a matrix grammar for $\{a^n b^n c^n | n > 0\}$
 - (J) Define Turing Thesis. When a problem is called undecidable?

SECTION-I

- Q2. (a) Draw a Finite State-Machine that accepts a number divisible by 5. The allowable digits for number representation are 1, 2, 3 & 5 i.e $\Sigma = 1, 2, 3, 5$ }
 - (b) Show that if M is a Moore machine then there exists a corresponding Mealy machine. (5,5)
- Q3. (a) Prove that $\{awa \mid w \in \{a, b\}^*\}$ is a regular language.
 - (b) Prove that the following two grammar generate same language

 $G_1: S \rightarrow aS, S \rightarrow bA, A \rightarrow aA, A \rightarrow b$

 $G_2: S \rightarrow aS, S \rightarrow Ab, A \rightarrow Aa, A \rightarrow b$ (5,5)

SECTION-II

- Q4. (a) Show that CFL is not closed under the operation of intersection.
 - (b) Draw/design a Push Down Automata for the language $L=\{a^ncb^n | n\geq 0\}.$ (5,5)
- Q5. Consider the language L specified by the grammar $G = (N, \Sigma, P, S)$, where $N = \{S, A, B\}, \Sigma = (a, b, c\}$ and P is set containing following productions:
 - 1. $S \rightarrow AB$
 - 2. $A \rightarrow ab$
 - 3. A→aAb
 - 4. B→c

5. $B \rightarrow Bc$

(a)	Determine w	hether each of t	he following strings	is a
	sentence in th	e language.		
	aabb	aaabbc	aaabbbccc	ababcc

(b) Find the language L produced by the grammar. (4,6)

SECTION-III

- Q6. (a) Write brief notes on partial recursive function. (5)
 - (b) What are prioritized rules in Markov algorithm? Describe the concept with the help of a suitable example. (5)
- Q7. Prove that the grammar
 - 1. S→ACaB
 - 2. $Ca \rightarrow aaC$
 - 3. $CB \rightarrow DB$
 - 4. $CB \rightarrow E$
 - 5. $aD \rightarrow Da$
 - $6. \qquad AD \to AC$
 - 7. $aE \rightarrow Ea$
 - 8. $AE \rightarrow c$

Generates language $L = \{a^n | n \text{ is an integral power of } 2\}$. Specify all steps of derivations. (10)

SECTION – IV

- Q8. (a) Show that proper subtraction is a total computable function.
 - (b) Define Post correspondence Problem (PCP). Show that $S = \{(b, bbb), babbb, ba\}, (ba, a)\}$ has a solution over $\Sigma = \{a, b\}.$ (5,5)
- Q9. (a) Draw a Turing machine for addition of two positive integers.
 - (b) Briefly explain the concept of computational complexity. Give an example of algorithm that is NP completer. (5,5)
