Second Semester [MCA] – MAY-JUNE 2006

Paper Code: MCA-104 Paper ID: 44104

Subject: Theory of Computation

Time: 3 Hours

Maximum Marks: 60

Note: Answer question 1 and any four of the remaining six questions. Question 1 is of 20 marks and the rest are of 10 marks each.

Q. 1

Q. 2

- (a) Draw a finite automata that accepts sets of strings composed of zeros and ones which end with string 00.
- (b) Define an inherently ambiguous language. Give an example of such language.
- (c) Give a recursive formula for addition of two positive numbers using initial functions like zero, identify and successor functions. Hence show that addition of two positive numbers is computable.
- (d) Show that if M_1 is a Moore machine then their exists a corresponding Mealy machine.
- (e) Draw a NFA with three states that accepts L= $\{a^n : n \ge 1\} \cup \{b^k a^m : k \ge 0 \ m \ge 0\}$.

$(4 \times 5 = 20)$

(5, 5)

- (a) Show that the set of all strings in {0, 1} such that every third symbol is the same as the first symbol is a regular language.
- (b) Construct a context free grammar for the language $L=\{w \mid w \in \{0, 1\}^*, |w| \text{ is odd and w contains 0 in the middle of the string}\}.$

Q. 3 Convert the following Context Free Grammar into GNF.

 $S \rightarrow bA$ $S \rightarrow aB$ $A \rightarrow bAA$ $A \rightarrow aS$ $A \rightarrow a$ $B \rightarrow aBB$ $B \rightarrow bS$ $B \rightarrow b'$

Q. 4

- (a) Draw a Push Down Automata with minimum number of pushdown stores of the language $\{wcw^R | w \in \{0, 1\}^*\}$. Here w^R is reverse string of w.
- (b) Give a matrix grammar for the above language.

(7, 3)

- Q. 5
- (a) Define a Turing machine. Draw a Turing Machine that adds two positive integers.
- (b) State and prove the pumping lemma for CFL. (5, 5)

Q. 6

- (a) Define Derivation Tree. Is it possible to draw a derivation tree for a string derived from context sensitive grammar? Give reasons for your answer. (5, 5)
- (b) Let '10011010011' is a symbol sequence. Apply the following prioritized Markov rules to convert the sequence such that all symbols following the pattern '1101' should be '0'.

(5, 5)

 $\begin{array}{l} (1) \ a0 \ \rightarrow 0a \\ (2) \ a1 \ \rightarrow 0a \\ (3) \ a \rightarrow \\ (4) \ 1101 \rightarrow 1101a \\ (5) \rightarrow \end{array}$

- Q. 7 Write short notes on any two of the following:-
 - (a) L –System of grammar
 - (b) Partial recursive function
 - (c) Unsolvable class or problem.

Second Semester [MCA] – MAY 2004

Paper Code: MCA-104

Subject: Mathematical Function of Computer Science

Time: 3 Hours

Maximum Marks: 60

(b) Determine whether or not the following are context free language or not: (i) $L = \{a^n ww^R a^n : n \ge 0, w \in \{a, b\}^*\}$ (ii) $L = \{a^n b^m : n = 2^m\}$ (iii) $L = \{a^n b^n c^j : n \le j\}$ 6

Q. 5 (a) Construct a non deterministic push down automata for the grammar. 5 $A \rightarrow aABB \mid aAA$ $A \rightarrow ABB \mid a$ $B \rightarrow bBB \mid A$

(b) Design Turing machine to compute the following functions for x and y positive integers represented in unary. 5

(i)
$$f(x) = 3x$$

(ii) $f(x, y) = x-y; x > y$
 $= 0, x \le y$

Q. 6	(a) For $\sum = \{a, b, c\}$, find a Post system that generates the followin (i) $L(a * b + ab * c)$	ng languages :
	(i) $L = (a^n b^n c^n)$	5
	(b) Find an L- system that generates L (aa*).	5
Q. 7	(a) Show that every context sensitive language is recursive. (OR)	5

Prove that the Ackermann's function is not primitive recursive.

(b) Prove the statement that if a language L_1 is NP-Complete and polynomial time reducible to L_2 , then L_2 is also NP-Complete. 5

Second Semester [MCA] – MAY 2003

Paper Code: MCA-104 Subject: Mathematical Foundations of Computer Science

Time: 3 Hours

Maximum Marks: 60

	Note: Attempt any five questions. All questions carry equal marks.
Q. 1	 (a) Construct a DFA that accepts all strings on {0,1} that have three consecutive zeros. (b) Construct a DFA acquivalent to following regular expression 10 + (0+11) 0 *1
	(b) Construct a DFA equivalent to following regular expression $10 + (0+11) 0^{+1}$
Q. 2	Which one of the following language are regular sets. Prove your answer (a) Set of all strings with equal number of zeros and ones. (b) $(x + y) = x^{R} + x + y$ in $(0 + 1)^{+}$
	(c) { $0^{m} 1^{n} 0^{m+n} \mid m \ge 1 \text{ and } n \ge 1$ }
Q. 3	 (a) Give context free grammars generating the following sets. {aⁱ b^j c^k i ≠ j or j ≠k} (b) Let G be the Grammar S→ a B b A A → a a S b AA B → b b S a BB
	 For the string aaabbabbba find a (i) Left most deviation (ii) Right most deviation (iii) Parse Tree
Q. 4	 (a) Construct a Push down Automata equivalent to the following grammar. S → a AA, A → aS b S a (b) With a suitable example describe pumping frame for context free language.
Q. 5	 (a) Prove that a two counter machine can simulate an arbitrary Turing machine. (b) Design a Turing machine to recognize the following languages {ww^R w is in (0+1)*}
Q. 6	 Which of the following properties of recursively enumerable sets are themselves recursively enumerable? Give reasons for your answer. (a) L contains Atleast two strings. (b) L is infinite (c) L is a context free language. (d) L = L^R

Q. 7 (a) Prove that context free language are not closed under intersection.

(b) Let G1 and G2 be grammars with G1 regular. Is the problem L(G1) = LG(2)decidable when

- (i) G2 is unrestricted
- (ii) G2 is regular
- Q. 8 Write notes on following
 - (a) Non-deterministic Turing Machine(b) Mealy Automation.

Second Semester [MCA] – JUNE 2001

Paper Code: MCA-104 Subject: Mathematical Foundations of Computer Science

Time: 3 Hours

Maximum Marks: 70

Note: Attempt five questions in all including Q. 1 which is compulsory. Q. 1. carry 30 marks and Q. 2 to Q. 8 carry 10 marks each.

(b) Convert the grammar $S \rightarrow abSb / aa$ in Greibach Normal Form.;

Q. 3 (a) Construct a Turing machine that computes the function f(n, m) = n * m.

(b) Let $\sum = \{a, b\}$ Show that $L = \{w | w^R : w \in \sum^*\}$ is not regular.

Q. 4 (a) What language is accepted by the machine

$$\begin{split} M &= (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \{a, b, \Pi\}, \delta, q_0, \Box, q_3\}) \\ With \\ \delta &(q_0, a) &= (q, a, R) \\ \delta &(q_0, b) &= (q_2, b, R) \\ \delta &(q, b) &= (q_1, b, R) \\ \delta &(q_1, \Box) &= (q_3, \Box, R) \\ \delta &(q_2, b) &= (q_2, b, R) \\ \delta &(q_2, a) &= (q_3, a, R) \end{split}$$

(b) What is Non-deterministic Turing Machine? Explain with suitable example.

Q. 5 (a) Remove all unit production from $S \rightarrow Aa \mid B,$ $S \rightarrow A \mid bb,$ $S \rightarrow a \mid bc \mid B$

- (b) What is pumping leema? Discuss its use.
- Q. 6 Let the Grammar G be defined by : S→AB, B→ A | Sb, A → Aa | bB Given the Derivation tree for the following sequential form :
 (a) baSb
 (b) baabaab
 - (c) bBABb

Can you find an inherently ambiguous context free language? If yes give an example.

Q. 7 (a) Give the regular expression for the following :-

(b) Use induction on the size of S to Show that if S is a finite set then $|2^{S}| = 2^{|S|}$

- Write short notes on any two of the following :-Q. 8
 - (a) Computational complexity(b) Unrestricted Grammars

 - (c) Closure property for DFL's
 - (d) Mealy Machines

Second Semester [MCA] – MAY 2005

Paper Code: MCA-104

Subject: Theory of Computation

Time: 3 Hours

Maximum Marks: 70

Note: Attempt five questions in all, including Q.1 which is compulsory.

Q. 1	Answer the following :-	20		
	(a) Find the set of strings on $T = \{a, b\}$ produced by the regular expression			
	b*(a+b)*ab*.			
	(b) Show that Class of CFL is not closed under complement and intersection	n.		
	(c) What class of language can be generated by grammar with only left context i.e.			
	grammar in which each production is of the form $\alpha A \rightarrow \alpha B$, where α ar	nd ß		
	belong to $(n \cup \epsilon)^*$?	P		
	(d) Prove that $\{awa \mid w \in \{a, b\}^*\}$ is a regular language			
	(a) From the matrix grammar for $\{a^n b^n c^n \mid n > 0\}$			
	(c) Give the matrix grammar for $(a \ b \ c \ m \neq 0)$.			
0^2	(a) Differentiate between partial recursive function and Total recursive f	unction		
X. 2	What is bounded minimization?	5		
	(b) Give the following recursive function	5		
	(b) Give the following recursive function $A_{(0, y)} = 1$:	5		
	A(0, y) = 1, A(1, 0) = 2;			
	A(1,0) = 2, $A(n,0) = n + 2, for all n > 2 and$			
	$A(x,0) = x + 2 \text{for all } x \ge 2 \text{ and}$			
	A(x + 1, y+1) = A(x, y + 1), y)			
	Determine A (3, 2)			
0^{3}	(a) State and prove the number lemme for \mathbf{P} and \mathbf{P} (\mathbf{P})	5		
Q. 3	(a) State and prove the pumping remna for Kegulai Language (KL). (b) Show that $(a^n b^n a^n + n > 0)$ is not a PI	5		
	(b) Show that $\{a, b, c, + n \ge 0\}$ is not a KL.	5		
0.4	(a) Define complexity of an algorithm. Show that every logarithmic fun	f(n)		
Q. 1	(a) Define complexity of an algorithm. Show that every logarithmic func- $-\log_n n$ has the same order as $g(n) - \log_n n$	5		
	$= 10g_{b}$ mas the same order as $g(n) = 10g_{2}n$	5		
	(b) Define c-closure set of states in a NFA. How is it used to convert a N	JEA with		
	c move into a DEA without a c move	5		
	e-move into a DFA without a e-move.	5		
0.5	(a) Define Instantaneous Description in a PDA Draw a PDA for the language			
Q. J	$\{ww \mid w \in \{0, 1\}\}$	5uuge 7		
	(b) Describe the same DDA as a sequence of Dc	3		
	(b) Describe the same i DA as a sequence of iDs.	5		
0.6	(a) Define the Turing machine. Draw a Turing machine that concatenate	two		
$\mathbf{X} \cdot \mathbf{v}$	strings in the alphabet {a b}	5		
	sumgs in the alphabet {a, b}.	5		

	(b) Show that proper subtraction is a total computable function. Draw a machine for this.	Turing 5
Q. 7	 (a) Check whether G = ({E}, {a, b, c, +, *}, E, P) where P is given as E → E + E E * E a b c is ambiguous. (b) Convert the grammar of part (a) into GNF. 	5 5
Q. 8	 Write short notes on any two of the following:- (i) Post-independence Problem. (ii) Universal Turing Machine. 	10

(iii) Context- Sensitive Language.
