(4)

End Term Examination

Second Semester [MCA] MAY-JUNE 2009

Paper Code: MCA – 106	Subject: Computer System Architecture
Paper ID: 44106	(Batch 2004 – 2008)
Time : 3 Hours	Maximum Marks : 60
Note: Q1. is compulsory. Attempt four questions from the rest.	

O1. Answer the following questions.

- a) A weather forecasting computation requires 250 billion floating point operations. The problem is possessed in a supercomputer that can perform 100 megaflops. How long it would it would take to do these computations? (3)
- b) "Today; traditionally CISC microprocessors employ RISC characteristics, whereas RISC microprocessors employ CISC characteristics". Explain briefly this comment with illustrative examples. (3) (2)
- c) What is the purpose of snoopy-bus protocol?
- d) Comment on "Interrupt Enable (IEN) is disabled automatically during an interrupt cycle if a pending interrupt is deleted, therefore no further interrupt can be served while executing the ISR".

		(3)
e)	Explain operand forwarding.	(1)
f)	Explain arithmetic and instruction pipelining.	(2)
g)	What is the objective of cycle stealing in DMA?	(1)
h)	Explain multi-port memory.	(1)
i)	Explain hand shaking process in asynchronous transmission.	(2)
j)	Explain relevance of memory interleaving in pipelining/vector processing.	(2)

Q2.

- a) Draw flowchart of Booth multiplication algorithm. Show the step-by-step multiplication process using Booth algorithm when the following binary numbers are multiplied. Assume 5-bit register that hold signed number. (-15) x (-13) (5)
- b) A non-pipeline system takes 50 ns to process a task. The same task can be processed in a sixsegment pipeline with a clock cycle of 10 ns. Determine the speedup ration of the pipeline for 100 taskes. What is the maximum speedup that can be achieved? (5)

Q3.

- a) A computer system needs 2 KB of RAM, 2KB of ROM and 3 I/O ports with 3 registers in each. The first 1 KB of memory space is occupied by ROM and finally the I/O port addresses. To construct this memory system 512 x 8 RAM chips are used. Show the complete memory map of the system. (5)
- b) Main memory M1 and disk memory M2 constitute two level hierarchy virtual memory system that contains page frames as follows:
 - M1 page frame: a, b, c

M2 page frame: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The CPU is generating page request in a sequence as 0, 1, 2, 4, 2, 3, 7, 2, 1, 3 and 1. by employing LRU,OPT and FIFO page replacement policies, find out the following(s).

- 1. hit ratio for each policy
- 2. which one produces best result. (1)

Q4.

- a) A 512-bits data packet needs to be prepared with 16-bit words, for serial asynchronous communication. There us 1 start bit and 1.5 stop bits for each word. The data packet is then encapsulate with an 8-bit SOH, 8 bit ETX and 16-bit CRC. Calculate the total overhead(in percentage) of transferring 1000 such packets. (5)
- b) Draw a flow chart showing the steps of floating point addition. Illustrate the sequence of steps with the binary equivalents of 0.34375 and 0.125, stored in their normalized forms. (5)

Q5

- a) What are the typical applications and the limitation of (i) Relative addressing mode (ii) Based, indexed addressing mode. (5)
- b) A microprocessor multiplexes data from four different data terminals, and sends the multiplexed data over a telephone link to a remote unit, via a UART. Suggest the most suitable I/O communication scheme (such as parallel, serial, synchronous, asynchronous, strobed, handshaked) between: (5)
 - i. The data terminals and the microprocessor
 - ii. The microprocessor and the UART
 - iii. The UART and the remote unit.

Q6.

a) Construct a 5-to-32-line decoder with four 3-to-8-line decoders with one enable and one 2-to-4-line decoder.
b) Obtain the 10's complement of the following sin digit decimal number: 123900, 090657, 100000, 000000
(5)

Q7.

- a) Explain Instruction cycle and Interrupt cycle with the help of flowchart. Describe instruction format and addressing mode bits.
 (5)
- b) Explain the architecture of content Addressable Memories and logic for searching particular word in the memory. (5)

Q8. write short notes on any five:-

- a) Cache memory
- b) Virtual memory
- c) Memory management hardware
- d) Vector processor
- e) Micro instruction
- f) Micro program
- g) Control Memory

(2x5 = 10)